

Le informazioni contenute nel manuale sono solo a scopo informativo e possono subire variazioni senza preavviso e non devono essere intese con alcun impegno da parte di Promax srl. Promax srl non si assume nessuna responsabilità od obblighi per errori o imprecisioni che possono essere riscontrate in questo manuale. Eccetto quanto concesso dalla licenza, nessuna parte di questa pubblicazione può essere riprodotta, memorizzata in un sistema di archiviazione o trasmessa in qualsiasi forma o con qualsiasi mezzo, elettronico, meccanico, di registrazione o altrimenti senza previa autorizzazione di Promax srl. Qualsiasi riferimento a nomi di società e loro prodotti è a scopo puramente dimostrativo e non allude ad alcuna organizzazione reale.

Rev. 1.0.0

1 M6 Cambio Utensile Lineare

L' intero ciclo PLC di cambio utensile lineare è scritto in Gcode IsoNs

//MACRO CAMBIO UTENSILE LINEARE REV 2.0.0 //(C) PROMAX SRL //M6 \$APP=\$[X7] // CONTROLLA SE RUN NORMALE O DA SIMULAZIONE IF \$APP<>0 //SE DA SIMULAZIONE SALTA TUTTO GOTO END **//ESCE** END_IF M5 //ARRESTA IL MANDRINO IF \$[15]=0 //CONTROLLO SE C'E' UN UTENSILE INSERITO (PINZA CHIUSA) GOTO LOAD //SE NESSUNA UTENSILE INSERITO SALTA AL CARICAMENTO END IF G96 **//SOSPENDE OFFSET** G98 **//SOSPENDE ZERO PEZZO** G87 //SOSPENDE OFFSET TESTA G44 //SOSPENDE COMPENSAZIONE LUNGHEZZA UTENSILE G0Z0 //MUOVE Z IN POSIZIONE LIBERA //LEGGE IL FILE DI SALVATAGGIO UTENSILI PER RECUPERARE UTENSILE INSERITO LOAD_VAR TOOL.INF GET_VAR \$OLDUT 0 \$ACTUT=\$[X6] //LEGGE IL NUOVO UTENSILE DA INSERIRE \$VEL=1 //FEED 1 MT/MIN //G81 X2 SE NECESSARIIO ABILITARE I LIMITI SECONDARI //G81 X3 IF \$ACTUT=0 //SE L' UTENSILE RICHIESTO E' IL NUMERO 0, SCARICA SOLAMENTE **GOTO DISCHARGE** END IF IF \$OLDUT=\$ACTUT //SE L' UTENSILE E' QUELLO MONTATO, CALCOLA I DATI SOLAMENTE **GOTO CALCULATE** END IF @DISCHARGE //SCARICA L' UTENSILE NEKLLA GIUSTA POSIZIONE IF \$OLDUT=0 ERROR 3 //ERRORE SE IL VECCHIO UTENSILE ERA 0 END PROGRAM END IF T[\$OLDUT] // SETTA LA TABELLA UTENSILE A QUELLO MONTATO \$DELTAZ=\$[U19] //CARICA LE VARIABILI DALLA TABELLA \$DELTAY=\$[U18] \$DELTAX=\$[U17] \$POSZ=\$[U16] \$POSY=\$[U15] \$POSX=\$[U14]

\$APPX=\$POSX+\$DELTAX	//PRENDE LE POSIZIONI
GI Y[\$POSY] F[\$VEL]	//ENTRA CON Y
@LOAD //INIZIO CARICA	MENTO NUOVO UTENSILE
G62 //ATTENDE ASSI	FERMI
\$[01]=1 //APRE	PINZA MANDRINO
\$[02]=1 //SOFFI	O ARIA
G0 Z[\$APPZ] //ESCE	CON Z
//FINE RILASCIO UTENSI	LE
T[\$ACTUT] //IMPO	STA LA NUOVA TABELLA
IF \$ACTUT=0 //SE IL N	IUOVO UTENSILE E' LO ZERO, SOLO SCAERICO
\$[O2]=0	//CHIUDE SOFFIO ARIA
\$[O1]=0	//CHIUDE PINZA MANDRINO
G4 F0.5	//PAUSA
WAIT_INPUT 4 1	4 1 //ATTENDE PINZA CHIUSA SENZA UTENSILE
G0 Z0	//Z A ZERO
GOTO END	//SALTA ALLA FINE
END_IF	
//CARICA IL NUOVO UTE	NSILE
\$DELTAZ=\$[U19]	//CARICA LE VARIABILI DALLA TABELLA
\$DELTAY=\$[U18]	
\$DELTAX=\$[U17]	
\$POSZ=\$[U16]	
\$POSY=\$[U15]	
\$POSX=\$[U14]	
\$APPX=\$POSX+\$DELTAX	
\$APPY=\$POSY+\$DELTAY	
\$APPZ=\$POSZ+\$DELTAZ	
G0 X[\$POSX] Y[\$POSY]	//APPROCCIA X E Y
G1 Z[\$POSZ] F[\$VEL]	//ENTRA CON Z
G62 //ATTENDE ASSI	FERMI
\$[O2]=0 //CHIU	DE SOFFIO ARIA
\$[01]=0 //CHIU	DE PINZA MANDRINO
WAIT INPUT 5 1 4 1	//ATTENDE PINZA CHIUSA CON UTENSILE
G4 F0.5	,,,
G1 X[\$APPX] Y[\$APPY]	//LIBER X,Y
G0 Z0	//Z A ZERO
DIM_VAR 1	
WRITE_VAR \$ACTUT 0	
SAVE VAR TOOL.INF	// ΣΔΙΛΑ ΙΙ ΝΙΙΟΛΟ ΠΤΕΝΣΙΓΕ
_	

@CALCULATE //SEZIONE DI CALCOLO

//USARE LA PROSSIMA SEZIONE PER PRESETTARE ASSE Z DA PARAMETRO DISTZ

//-----PRESET ASSE Z DA PARAMETRO DISTZ (Vedi Cap. 1.6) //READ_PARMAC "DISTZ" \$DISTZ //\$DISTZ=\$DISTZ/1000

//\$PRESETZ=\$[U1] //\$PRESETZ=-\$DISTZ+\$PRESETZ //G94 Z[\$PRESETZ] //-----FINE-----FINE------

@END

//G81 X0 RIMETTE I NORMALI LIMITI //G81 X1

G97 //RIPRENDE OFFSET

G99 //RIPRENDE ZERI

G88 //RPIRENDE OFFSET TESTA

Modi di cambio utensile lineari 1.1

Il codice M6 gestisce I seguenti modi di cambio utensile:

MODO A (approccio dall' alto)

Descrizione dei parametri tabella utensile

DX=0

PX= Pos X riferita all' utensile Nr. Centro del Foro *) **DY=0**

PY= Pos Y riferita all' utensile Nr. Centro del Foro *) **DZ=POZIONE LIBERA Z CON UTENSILE **)**

PZ= Pos Z riferita all' utensile Nr. Centro del Foro *)

*) Le unità di misura PX, PY, PZ devono essere le stesse riferite dal parametro macchine RESQUOTE:

**) Posizione di sicurezza Z con utensile

(\$[U17] User 15 in Tabella Utensile) (\$[U14] User 12 in Tabella Utensile) (\$[U18] User 16 in Tabella Utensile) (\$[U15] User 13 in Tabella Utensile) (\$[U19] User 17 in Tabella Utensile) (\$[U16] User 14 in Tabella Utensile)

DZ=USER14 + USER17

PZ=USER 14

Esempio tabella per 2 utensili (GestConfigIsoNs.exe)

Stessa posizione in Z e Y, offset foro in X 100000 um 100 mm. Z negative verso il basso

CPU/Comunication	on Axis (Compiler Inte	rface General	Machine Par	ameters Sy	stem Define	Heads	Tools	Code Pause	Internal Allarms	User Allarms	CN Allarms
		2										
User 6	User 7	User 8	User 9	User 10	User 11	User 12	Use	er 13	User 14	User 15	User 16	User 17 🔺
0	0	0	0	0	0	100000	1200	000	-150000	0	0	50000
0	0	0	0	0	0	20000	1200	000	-150000	0	0	50000

STANDARD M USER GUIDE

MODO B (Approccio laterale)

Descrizione dei parametri tabella utensile

DX=X POSIZIONE LIBERA *)

PX= Pos X riferita all' utensile Nr. Centro del Foro *)
DY= Z POSIZIONE LIBERA *)

PY= Pos Y riferita all' utensile Nr. Centro del Foro *) DZ= Z DISIMPEGNO CON UTENSILE vedi sopra

PZ= Pos Z riferita all' utensile Nr. Centro del Foro *)

(\$[U17] User 15 in Tabella Utensile) (\$[U14] User 12 in Tabella Utensile) (\$[U18] User 16 in Tabella Utensile) (\$[U15] User 13 in Tabella Utensile) (\$[U19] User 17 in Tabella Utensile)

Esempio tabella per 2 utensili (GestConfigIsoNs.exe)

Stessa posizione in Z e Y, offset foro in X 100000 um 100 mm. Z negative verso il basso

CPU/Comunication	on Axis C	ompiler Interf	ace General	Machine Par	ameters Sys	tem Define He	eads Tools	Code Pause	Internal Allarms	User Allarms	CN Allarms
User 6	User 7	User 8	User 9	User 10	User 11	User 12	User 13	User 14	User 15	User 16	User 17 🔺
0	0	0	0	0	0	100000	120000	-150000	0	-30000	50000
0	0	0	0	0	0	20000	120000	-150000	0	-30000	50000

1.2 M6 Flow Chart:

STANDARD M USER GUIDE

STANDARD M USER GUIDE

1.3 Ingressi Digitali CNC

Gli ingressi sono numerate partendo da 0

I4 → *Pinza chiusa senza Utensile inserito*

Se non viene usato questo ingresso modificare come segue (vedi codice in ROSSO)

IF \$ACTUT=0 //SE IL NUOVO UTENSILE E' LO ZERO, SOLO SCAERICO \$[02]=0 //CHIUDE SOFFIO ARIA \$[01]=0 //CHIUDE PINZA MANDRINO //G4 F0.5 PAUSA //WAIT_INPUT 4 1 4 1 ATTENDE PINZA CHIUSA SENZA UTENSILE G4F1 //ATTESA 1 SEC G0 Z0 //Z A ZERO GOTO END //SALTA ALLA FINE

END_IF

15 \rightarrow Pinza Chiusa con utensile inserito

Questo ingresso è fortemente raccomandato

1.4 Uscite Digitali CNC

Le uscite sono numerate partendo da 0

01=1 →	Pinza Aperta
01=0 →	Pinza Chiusa
02=1 →	Soffio Aria attivo

 $O2=0 \rightarrow Soffio Aria disattivo$

Se non viene utilizzato il soffio aria modificare come segue (vedi codice in ROSSO)

@LOAD //INIZIO CARICAMENTO NUOVO UTENSILE G62 //ATTENDE ASSI FERMI

 \$[01]=1
 //APRE PINZA MANDRINO

 //\$[02]=1
 SOFFIO ARIA

T[\$ACTUT] //IMPOSTA LA NUOVA TABELLA IF \$ACTUT=0 //SE IL NUOVO UTENSILE E' LO ZERO, SOLO SCAERICO //\$[O2]=0 CHIUDE SOFFIO ARIA \$[O1]=0 //CHIUDE PINZA MANDRINO

END_IF

. //\$[O2]=0 CHIUDE SOFFIO ARIA \$[O1]=0 //CHIUDE PINZA MANDRINO WAIT_INPUT 5 1 4 1 //ATTENDE PINZA CHIUSA CON UTENSILE

1.5 Parametri Tabella Utensile

La tabella Utensile, contiene tutti I parametric usati dalla macro M6. Il loro significato è descritto nel:

Cap. 1.1 Modi di cambio utensile lineare.

I parametri della tabella sono settati dalla funzione Gcode **Tn**. Sotto I parametric standard:

Diameter	Diametro utensile - usato da G42 G41 es: 23.2
Len	Lunghezza Utensile - usato da G43 o Preset Z
Vrot (rpm)	Velocità massima di rotazione rpm – Usata da M3 – M4
User 1	Generalmente usato per 2 nd Utensile (clone) – Riservato
User 2 to User 11	Liberi
User 12	Posizione Assoluta di X per inserimento o estrazione utensile
User 13	Posizione Assoluta di Y per inserimento o estrazione utensile
User 14	Posizione Assoluta di Z per inserimento o estrazione utensile
User 15	Offset X per inserimento o estrazione utensile
User 16	Offset Y per inserimento o estrazione utensile
User 17	Offset Z per inserimento o estrazione utensile

Prepare la Tabella Utensile

a) Eseguire "GestConfigIsoNs.exe" nella cartella Utilty ->GestConfigIsoNs o da:

Utility -> Configuratore IsoNs

b) Aprire IsoNs.cfg nella cartella di IsoNs con *Load Cfg* (Oppure se Isons è già stato utilizaato , con *Load default*)

c) Click su Tools (Tabella Utensili)

Heads Tools Code Pause

d) Inserire il numero di uutensili disponibili nella macchina (es. 3 utensili)

Click sul Bottone "+" per 3 volte

Diameter	Len	V Rot (rpm)	User 1	User 2	User 3	User 4	User 5	User 6	User 7	User 8	User 9
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0

I Parametri :

Diametro,Len, V Rot (rpm) possono Essere cambiati da *Utiltity)GestTabut)GestTabut.exe o:*

- e) Inserire i parametri User12, User13, User14, User15, User16, User17
- f) Inserire la PassWord e salvare la configurazione

1.6 Preset Asse Z Axis con Parametro DISTZ

Il codice della Macro M6 , può presettare la lunghezza in Z dell' utensile. Il Preset consider ail metodo seguente

Per usare questo metodo sono necessarie le seguenti istruzioni:

a) Attivare il codice in M6 (Rimuovere i commenti)

	// REA \$DI \$PF \$PF G94 // F		 Ns.cfg" (aprire Is	oNs.cfg ve	di cap 1.5)	
	c)	Click su Parametri Macchina					
	d)	General Machine Parameters System Define Click sul Bottone "+"					
NEW		New parameter	General	100	-1	NUMERICO	~
	e)	Cambiare il nome con "DISTZ" (tutto maiuscolo)					
DISTZ		New parameter	General	100	-1	NUMERICO	~
	f)	Cambiare la descrizione in "Distanza Z senza utensi	le"				

DISTZ	Z Distance without tool	General	100	-1	NUMERICO	~
						_

g) Salvare la configurazione

1.7 Creare il file TOOL.INF

La macro M6 code, usa un fileTOOL.INF per salvare I dati utensile. Per creare la prima volta, questo file eseguire il codice seguente :

\$ACTUT=1 DIM_VAR 1 WRITE_VAR \$ACTUT 0 SAVE_VAR TOOL.INF //INIZIALIZZA IL FILE

Il codice sopra scrive 1 come primo utensile.

Si deve insrire in \$ACTUT il numero reale dell' utensile che è presente nel mandrino (es: **\$ACTUT=2 ecc.**). Si deve caricare manualmente iol primo utensile

1.8 Creare Funzione M6

Una volta che il codice M6 è stato testato nella propria machine è possibile creare la funzione M6 nel modo seguente:

- a) Carica il codice M6
- b) Aprire il Plug In M HM

c) Settare M6 e generare la M

Da adesso il codice M6 è pronto all' uso.

2 M3-M4-M5 Gestione Mandrino

Di seguito vengono descritte le funzione standard M3,M4,M5 per la gestione del mandrino . Queste funzioni sono sviluppate in due parti:

- 1) M3 M4 M5 in Gcode IsoNs
- 2) M1003 M1004 M1005 (chiamate M3,M4,M5) in codice VTB Code sul CNC

Le funzioni M1003, M1004, M1005 dipendono dal tipo di CNC

2.1 GENERARE MACRO M3 M4 M5

Le funzioni M3,M4 avviano il mandrino in modo CW o CCW.

La velocità del mandrino è data dalla funzione Gcode Sval (es: S12000). Generalmente questa funzione scrive direttamente I giri al minute.

Per usare Sval in un applicazione VTB è necessario settare il parametro WR_SPD9=1:

- a) Aprire il Browser dei parametri macchina
- b) Settare a 1 WR_SPD9 e salvare i paramtri

	_	and the second	
	WR_SPD9	Enable write speed user 9	1
C)	Scrivere il codice	M3	
//WACR	O PER MANDRING	J CW	
//(C) PR	OMAX SRL		
//M3			
//****	* * * * * * * * * * * * * * * * * *	*****	
M1003	// CALL M1003 N	IEL CNC	
//WAIT_	INPUT 6 1 10 1	*)	
//G4F2		**)	

*) Usa questo codice se l' inverter del Mandrino ha l' uscita Velocità Raggiunta. In questo caso attende l' ingress DIGITALE 6 allo stato LOGICO 1 per un TEMP di 10sec.

**) Usa un semplice ritardo

d)	Aprirei Plug In M HM	-

- e) Settare M3 a Generare la M
- f) Scrivere il codice per la M4 e ripetere i punti D e E (scrivendo M4)

```
// MACRO PER MANDRINO CCW
//(C) PROMAX SRL
//M4
M1004 // CALL M1004 NEL CNC
//WAIT_INPUT 6 1 10 1
                 *)
//G4F2
                **)
  a) Scrivere il codice per la M5 e ripetere i punti D e E (scrivendo M5)
//MACRO PER STOP MANDRINO
//(C) PROMAX SRL
//M5
M1005 // CALL M1005 NEL CNC
```

2.2 GENERARE MACRO M1003 M1004 M1005

Le Macro M1003, M1004, M1005 sono scritte in codice VTB e controllano realmente il Mandrino. Il tipo di controllo in velocità, è in tensione 0-10V.

Queste dipendono dal tipo di CNC utilizzato e dal tipo di uscita analogica utilizzata Le macro leggono la velocità dal data memory **ISOV1_Generic(9)**. Questo viene scritto dalla funzione Gcode **Sval**. Quando questa è eseguita, il valore viene direttamente trasferito in **ISOV1_Generic(9)** :

Gcode	VTB
S12000	ISOV1_Generic(9)=12000
S8000	ISOV1_Generic(9)=8000

M1003,M1004,M1005 per NG35+NGIO, NGMEVO+NGMsX,NGQuark con uscita analogica

Se viene usata la scheda NGQuark, occorre settare il parametro ENCODER ENABLE=true nell' oggetto NGQ Init.

I/O Digitali usati

Out3→ISOV1.OUT2	
Out4→ISOV1.OUT3	
Out5→ISOV1.OUT4	

CW Direzione CCW Direzione START/STOP Mandrino

Uscita Analogica Utilizzata

Analog0→Ng_Dac(0,val)

a) Dichiarare le seguenti DEFINE nel progetto VTB

	Internal VAR Bit VAR	Define Static VAR	VSD VAR	Fixed VAR
ľ				
l				
L	Variable	Туре		
L	MAX_DAC_DIV	2047		
L	MAX_SPEED_SPINDLE	24000		

MAX_DAC_DIV MAX_SPEED_SPINDLE Numero di divisioni del DAC (non cambiare) Numero di Rpm max de mandrino a 10 V di tensione

b) Dichiarare le seguenti Variabili Interne

	Internal VAR	Bit VAR	Define	Static VAR	V	SD VAR	Fixed V	AR
			▼ No ▼ EXP □					
l	Variable		Туре	S	Shared	Export in Class	5	
l	Spindle_Speed		LONG	N	No			

c) Scrivere il codice seguente in TASK PLC → INIT TASK PLC

TASK PLC Code
Init Task PLC Task PLC
ISOV1_start_m=start_macro

ISOV1 Start m=Start Macro

d) Scrivere il codice seguente in MAIN → FUNZIONI DI PAGINA

Page Init Master Event Master Cyde Page Functor function Start_Macro() as char ISOV1_m_ACK=1 select ISOV1_M_cmd case 1003 ' start Spindle CW ISOV1.OUT2=true 'set Cv mode ISOV1.OUT3=false 'Reset CCv mode function Start Macro() as char ISOV1 m ACK=1 select ISOV1 M cmd case 1003 ' start Mandrino CW ISOV1.OUT2=true 'set modo Cw ISOV1.OUT3=false 'Reset modo CCw ' Calcola la velocita' Spindle Spindle=(ISOV1 generic(9) *MAX DAC DIV)/MAX SPEED SPINDLE ng_dac(0, Spindle_Spindle) ' Set Uscita Analogica ISOV1.OUT5=true 'Start mandrino ISOV1_status_m run=0 ' Libera IsoNs case 1004 'start Mandrino CCW ISOV1.OUT2=false 'Reset modo Cw ISOV1.OUT3=true 'set modo CCw ' Calcola la velocita' Spindle Spindle=(ISOV1 generic(9) *MAX DAC DIV)/MAX SPEED SPINDLE ng_dac(0, Spindle_Spindle) ' Set Uscita Analogica ISOV1.0UT5=true ' Start mandrino ISOV1_status_m_run=0 ' Libera IsoNs case 1005 ' STOP Mandrino ISOV1.OUT5=false ' Stop Spindle Spindle =0 ' set velocità a 0 ng dac(0, VelSpindle) ' Set Uscita Analogica ISOV1 status m run=0 ' Libera IsoNs case else ISOV1 m ACK=0ndselect

endfunction

M1003,M1004,M1005 per NGMEVO+PWM Output

Inserire il seguente oggetto nel progetto VTBt:

 $\underline{General} \rightarrow Cpwm.vco \rightarrow PWM NGM - EVO$

Settare le seguenti proprietà

Project Explorer			
Project Objects	Functions	Properties	Tables
PWM1			•
Property Ever	nts		
Property	Value		
Nome	PWM1		
Left	80		
Тор	235		
Enable	1		
Polarity	True		
Center Align	False		
Freq	50000		
Divisioni	256		

I/O Digitali Usate

Out3→ISOV1.OUT2	CW Direzione
Out4→ISOV1.OUT3	CCW Direzione
Out5→ISOV1.OUT4	START/STOP Mandrino

Uscita Analogica Utilizzata

Analog0→PWM_Val(0,val)

a) Dichiarare le seguenti DEFINE nel progetto VTB

Internal VAR	Bit VAR	Define	Static VAR	VSD VAR	Fixed VAR
Variable		Туре			
MAX_DAC_DIV			213		
MAX_SPEED_SPINDLE			24000		

MAX_DAC_DIV MAX_SPEED_SPINDLE Number of Digital Analog Output Divisions (not change) Number of Spindle Rpm (set to Rpm at 10 Volt value)

b) Dichiarare le seguenti Variabili Interne

ſ	Internal VAR	Bit VAR	Define	Static VAR	V	SD VAR	Fixed V/	AR
				No 💌 EXP 🗖				
I	Variable		Туре		Shared	Export in Class	;	
I	Spindle_Speed		LONG		No			

c) Scrivere il codice seguente in TASK PLC → INIT TASK PLC

TASK PLC Code
Init Task PLC Task PLC
ISOV1_start_m=start_macro

ISOV1 Start m=Start Macro

d) Scrivere il codice seguente in MAIN → FUNZIONI DI PAGINA

Page Init Master Event Master Cyde Page Functor function Start_Macro() as char ISOV1 m ACK=1 select ISOV1_M_cmd case 1003 ' start Spindle CW ISOV1.OUT2=true 'set Cv mode ISOV1.OUT3=false 'Reset CCv mode function Start Macro() as char ISOV1 m ACK=1 select ISOV1 M cmd case 1003 ' start Mandrino CW ISOV1.OUT2=true 'set modo Cw ISOV1.OUT3=false 'Reset modo CCw ' Speed calculation Spindle Spindle=(ISOV1 generic(9) *MAX DAC DIV)/MAX SPEED SPINDLE PWM_Val(0, Spindle_Spindle) ' Set uscita analogica ISOV1.0UT5=true ' Start Mandrino ISOV1_status_m run=0 ' Libera IsoNs case 1004 'start Mandrino CCW ISOV1.OUT2=false 'Reset modo Cw ISOV1.OUT3=true 'set modo CCw ' Speed calculation Spindle Spindle=(ISOV1 generic(9)*MAX DAC DIV)/MAX SPEED SPINDLE **PWM Val** (0, Spindle Spindle) ' Set uscita analogica ISOV1.OUT5=true ' Start Mandrino ISOV1_status_m_run=0 ' Libera IsoNs case 1005 ' Stop Mandrino ISOV1.OUT5=false ' Stop Mandrino Spindle Spindle =0 ' set velocita' a 0 **PWM Val** (0, VelSpindle) ' Set uscita analogica ISOV1 status m run=0 ' Libera IsoNs case else ISOV1_m_ACK=0 endselect endfunction

Index

1.1	Modi di cambio utensile lineari	6
1.2	M6 Flow Chart:	8
1.3	Ingressi Digitali CNC	11
1.4	Uscite Digitali CNC	11
1.5	Parametri Tabella Utensile	12
1.6	Preset Asse Z Axis con Parametro DISTZ	13
1.7	Creare il file TOOL.INF	14
1.8	Creare Funzione M6	15
2.1	GENERARE MACRO M3 M4 M5	16
2.2	GENERARE MACRO M1003 M1004 M1005	17
M100 analo	3,M1004,M1005 per NG35+NGIO, NGMEVO+NGMsX,NGQuark con uscita gica	17
M100	3,M1004,M1005 per NGMEVO+PWM Output	19